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Abstract

This paper considers the problem of estimation frequency response functions (FRFs) for a single-input
single-output (SISO) system in the presence of additive noise on both input and output measurements. It
demonstrates that principle component analysis (PCA) can be employed to solve such problems and
demonstrates that this is equivalent to the methods based on total least squares (TLS). FRF estimation is
also cast as a problem in statistical inference and the use of the principle of maximum likelihood (ML) leads
to a novel development of a generalised TLS scheme. This analysis also provides a framework within which
one can compute asymptotic expressions for the variance of such estimators.
r 2005 Elsevier Ltd. All rights reserved.
1. Introduction

The problem of estimating the dynamic characteristics of a linear time-invariant system (e.g. its
transfer function or impulse response) from measurements of its input and output is of long-
standing interest in many areas of engineering. In many areas of engineering the solution to this
problem is realised in the frequency domain, leading to the estimation of the system’s frequency
see front matter r 2005 Elsevier Ltd. All rights reserved.
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response function (FRF). This paper reconsiders the problem of FRF estimation for a single-
input single-output (SISO) system.
Traditional experimental response testing procedures are subject to several potential

confounding factors. In particular, the measurements can often be undermined by various
factors including nonlinear system behaviour, change of system characteristics with time,
instability and, most commonly, the contamination of the data by additive measurement noise. It
is the general problem of FRF estimation in the presence of uncorrelated additive measurement
noise that forms the focus for this paper. Fig. 1 depicts the generic problem we consider in
block diagram form. Note in this figure Fourier transform (FT) pairs are indicated by the
symbol 2.
It is crucial to the problem of FRF estimation that the most appropriate statistical estimation

procedure is followed in order to obtain an accurate estimate for the identification of the system
under investigation. There are two classical transfer function estimators commonly in use; these
estimators are based on least-squares optimisation methods and are commonly referred to as
H1ð f Þ and H2ð f Þ. Both these methods are commonly regarded within the framework of least-
squares estimation, which assumes that any noise is present on only one of the measured signals.
An alternative technique, in which noise is assumed on both signals, is based on the concept of
total least squares (TLS) and is commonly referred to as Hsð f Þ. All three methods have been
widely applied are integral to a great many analysis tasks.
The goal of this paper is to provide an alternative framework in which all three methods can be

derived. Specifically, we show that all three methods can be legitimately regarded as maximum-
likelihood (ML) methods. This observation not only intimately links the three techniques but also
allows one to infer that the estimators share the rich and well-known benefits of ML schemes; as
opposed to the relative porosity of general properties of least-squares techniques. In particular, we
shall use the observation that the schemes are ML techniques in order to derive expressions for the
variance of the TLS FRF estimator.
The remainder of this paper is organised as follows: Section 2 recaps the properties of the

three well-established techniques. Section 3 discusses the interpretation of the FRF estimation
as a problem in linear regression and explains how principle component analysis (PCA) can be
used as a tool to solve this problem. Section 4 is dedicated to the use of the method of ML to the
problem of FRF estimation. Besides developing the optimal (in a ML sense) estimator
performance metrics are also derived. Simulation studies presented in Section 5 serve as a
verification of the theoretical results established herein, with a summary and conclusions being
given in Section 6.
Fig. 1. Measurement configuration.
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2. Least-squares FRF estimation

The two most familiar FRF estimation methods are H1ð f Þ and H2ð f Þ. With reference to
Fig. 1, these can be defined as [1]

H1ð f Þ ¼
Ŝxmym

ð f Þ

Ŝxmxm
ð f Þ

(1)

and

H2ð f Þ ¼
Ŝymym

ð f Þ

Ŝymxm
ð f Þ

, (2)

where Ŝabð f Þ is an estimator for the cross-spectral density between aðtÞ and bðtÞ and if aðtÞ ¼ bðtÞ
then this spectrum is referred to as an auto-spectral density or a power spectrum. Assuming the
system under investigation is truly linear and the two additive measurement noises nxðtÞ and nyðtÞ
are mutually uncorrelated and uncorrelated with the input signal, then the statistical behaviour of
these two FRF estimators in the presence of additive measurement noise is well established. The
important results can be summarised as: for the case of measurements with only output noise,
estimator H1ð f Þ is unbiased; whereas for the case of measurements with only input noise,
estimator H2ð f Þ is unbiased; and when noise is present on both the input and output both H1ð f Þ
and H2ð f Þ are biased. In the latter case one can further show that [1]

E½H1ð f Þ�pHð f ÞpE½H2ð f Þ�, (3)

where E½ � denotes the expectation operator. This result allows one to approximately bracket the
correct result by computing both transfer function estimators. It should be noted that Eq. (3) is
developed using the mean values for H1ð f Þ and H2ð f Þ and there is no guarantee that for finite
data lengths it will hold true. A more correct fashion by which to bound estimates of the transfer
function is to use the concept of a confidence interval. For example, it can be shown [1,2] that the
confidence interval for the magnitude of a transfer function estimated via H1ð f Þ is given by [1,2]

jH1ð f Þj
2 � 1�

4

N � 2
�

1

g2xmym
ð f Þ
� 1

 !
f 2;N�2ð1� bÞ

( )
, (4)

where f 2;N�2ðbÞ is the inverse cumulative distribution of the F-distribution with ‘‘2, N � 2’’ dof
(for large N f 2;N�2ðbÞ � � logð1� bÞ) and g2xmym

ð f Þ is the coherence function between the
measured variables which is given by

g2xmym
ð f Þ ¼

jSxmym
ð f Þj2

Sxmxm
ð f ÞSymym

ð f Þ
. (5)

Besides the above most commonly used transfer function estimators, H1ð f Þ and H2ð f Þ,
there exists an alternative estimator Hsð f Þ [3] based upon the concept of TLS [4]. The estimator
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Hsð f Þ is defined as

Hsð f Þ ¼
Ŝymym

ð f Þ � sŜxmxm
ð f Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fsŜxmxm

ð f Þ � Ŝymym
ð f Þg2 þ 4sjŜxmym

ð f Þj2
q

2Ŝymxm
ð f Þ

(6)

and s is a scale factor that allows one to manipulate the FRF estimates. By letting s ¼ 0 one
obtains H2ð f Þ and the case where s!1 one can show that Hsð f Þ ! H1ð f Þ. Hence, if one
varies s over the range ½0;1� the estimator Hsð f Þ takes values in the range ½H1ð f Þ;H2ð f Þ�. The
case of s ¼ 1 defines an additional FRF estimator, namely Hvð f Þ [5–8]. This paper concentrates
on the interpretation and analysis of the estimator Hsð f Þ, along with the special case Hvð f Þ.
3. PCA and FRF estimation

PCA is one of the most effective multivariate data analysis techniques. It takes the form of an
eigenvalue decomposition (EVD) of the covariance matrix. The direction of the resulting
eigenvectors represent the direction of principal components and these components are weighted
according to value of the corresponding eigenvalues. The sum of the eigenvalues is equal to the
total variance (power) of the original variables. The principle components represent a linearly
transformed version of the input data, with the benefit that the transformed variables are
uncorrelated. This approach also allows one to identify components of low power that may be
removed from the data set without significantly affecting the data, thus producing a dimensionally
reduced form of the original data. The aim of the method is to introduce parsimony to the
analysis.
This section aims to discuss how PCA can be used to estimate FRFs. However, to illuminate

this presentation we shall regard the problem of FRF estimation as an example of linear
regression.

3.1. FRF estimation as a problem in linear regression

In order to compute the FRF estimators given by Eqs. (1), (2), and (6) one first needs to
estimate the spectra involved. One can employ a variety of spectral estimation techniques, but for
the purposes of this analysis we shall assume the use of a direct (segment averaging) technique. In
direct spectral estimation algorithms the measured signals xmðtÞ and ymðtÞ are first partitioned into
overlapping segments of equal length, a window is then applied and the estimate of, say the cross-
spectrum, is defined as

Ŝxmym
ð f Þ ¼

1

N

XN

n¼1

X �mn
ð f ÞY mn

ð f Þ (7)

in which X mn
ð f Þ and Y mn

ð f Þ are the FTs of the nth (windowed) segment of xmðtÞ and ymðtÞ,
respectively, N is the total number of segments. From hereon, it is tacitly assumed that the length
of each window is sufficiently large so that the biasing effects of the window can be neglected.
Within such a framework the standard transfer function estimators can be derived by regression

analysis [2] based on the observation that in the absence of noise the input–output relationship of
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a linear time-invariant system is given by

Y ð f Þ ¼ Hð f ÞX ð f Þ. (8)

The problem is to estimate the function Hð f Þ based on N observations corresponding to the
FTs of each segment, i.e. X mn

ð f Þ and Y mn
ð f Þ for n ¼ 1; . . . ;N. In order to visualise these

estimators we shall temporarily consider that X mn
ð f Þ and Y mn

ð f Þ are real valued. Fig. 2 shows a
set of measured points and various error measures that can be adopted.
If one minimises the sum of the squared vertical errors ðeyÞ between the fitted line and the data points

then the estimator H1ð f Þ is obtained, whereas if the sum of the squared horizontal errors ðexÞ is the
quantity to be minimised then the estimator H2ð f Þ results. Whereas if it is the sum of the perpendicular
errors ðetÞ that is minimised then the TLS estimator Hvð f Þ is realised. These interpretations are
powerful intuitive tools allowing one to readily identify the merits of the algorithms. The drawback of
such an interpretation is that it adds little to the mathematic underpinning.

3.2. Principal component approach for estimating transfer characteristics

It has already been shown in the previous section that the above FRF estimators can be derived
from a geometric standpoint, relying upon the fact that in the frequency domain the problem of
estimating a transfer function is a linear regression problem [2]. In this section we seek to
demonstrate how PCA can be employed to obtain a FRF estimate.
The derivation of principal components for such processes can be derived as follows: from a

measurement vector hnð f Þ containing the input and output data

hnð f Þ ¼
X mn
ð f Þ

Y mn
ð f Þ

" #
n¼1;...;N

. (9)

The covariance matrix Rð f Þ is defined as

Rð f Þ ¼ E½hnð f Þhnð f Þ
H
� ¼ QHKQ, (10)

where K is a diagonal matrix containing the ranked eigenvalues of Rð f Þ and the orthonormal
transformation matrix Q is the matrix containing the corresponding eigenvectors as its columns
and H denotes the conjugate transpose (Hermition). The principle components zn of the data
hnð f Þ are defined through a transformation matrix T as

zn ¼ Thnð f Þ ¼ QHhnð f Þ. (11)
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If PCA is carried out on noise-free input output data then in addition to the actual SISO
process involving X mn

ð f Þ and Y mn
ð f Þ (as shown in Fig. 1) one can also consider representing the

system by a virtual two-input-two-output (TITO) process, depicted in Fig. 3. In this virtual
system, the principal components z1ðnÞ and z2ðnÞ are inputs and the original signals X mn

ð f Þ and
Y mn
ð f Þ are the outputs. PCA solves the inverse problem by finding the transformation that maps

the two correlated variables into two uncorrelated variables.
If the system is linear, so that Y mn

ð f Þ ¼ bX mn
ð f Þ, then only one distinct eigenvalue exists

whose value is equal to the sum of the powers of the inputs. The ratio of the two values in the
associated eigenvector determines the scale factor b.
To estimate a transfer function, this procedure is applied frequency bin by frequency bin. The

spectral correlation matrix is estimated using

R̂ð f Þ ¼
Ŝxmxm

ð f Þ Ŝymxm
ð f Þ

Ŝxmym
ð f Þ Ŝymym

ð f Þ

" #
. (12)

The eigenvalues and the eigenvectors of the above given matrix can be computed leading to

l1;2 ¼
Ŝxmxm

ð f Þ þ Ŝymym
ð f Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðŜxmxm

ð f Þ � Ŝymym
ð f ÞÞ2 þ 4jŜxmym

ð f Þj2
q

2
, (13)

t1;k

t2;k

� �
k¼1;2

¼
Ŝymym

ð f Þ � Ŝxmxm
ð f Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðŜxmxm

ð f Þ � Ŝymym
ð f ÞÞ2 þ 4jŜxmym

ð f Þj2
q

2Ŝymxm
ð f Þ

, (14)

where fti;jg are the elements of the transformation matrix T. The eigenvector associated with the
largest eigenvalues corresponds to the addition case in Eq. (14) and it is this ratio that represents
an estimate of the transfer function, HPCAð f Þ.

HPCAð f Þ ¼
Ŝymym

ð f Þ � Ŝxmxm
ð f Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðŜxmxm

ð f Þ � Ŝymym
ð f ÞÞ2 þ 4jŜxmym

ð f Þj2
q

2Ŝymxm
ð f Þ

. (15)

Evidently this estimator is exactly that associated with the TLS solution, namely Hvð f Þ, see
Eq. (6) with s ¼ 1. This is not a surprising result since the TLS solution can be obtained from an
eigen-decomposition of the spectral correlation matrix [4], which is exactly the same mechanism
used to compute the PCA estimate. The interesting observation is the novel viewpoint that this
result provides.
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4. Statistical interpretation of transfer function estimation

In this section we shall approach the problem depicted in Fig. 1 from another perspective,
namely as a problem of statistical inference. For the purposes of the initial discussion we shall
assume that the spectra of the noise processes Snxnx

ð f Þ and Snyny
ð f Þ are known. In which case the

problem of estimating the transfer function from input–output data involves only two unknown
variables: the FRF Hð f Þ and the input spectrum Sxxð f Þ (note the output spectrum Syyð f Þ can be
inferred from the knowledge of Hð f Þ and Sxxð f Þ). It is assumed that all the signals are Gaussian
and that X ð f Þ, Nxð f Þ and Nyð f Þ are mutually uncorrelated. The assumption of Gaussianity is
not very restrictive, since even if the time series xðtÞ is non-Gaussian, then the act of taking a
Fourier transform involves linear combinations of the data, which, by virtue of the Central Limit
Theorem, tends to make the Fourier coefficients close to Gaussian [9].
The methodology adopted is that of an ML estimator; the primary reason for this is that ML

estimators are guaranteed to be unbiased and asymptotically efficient [10,11]. Therefore, for large
data sets one can be confident that the ML estimator approximately satisfies the Cramer–Rao
lower bound (CRLB) ensuring that, asymptotically, no unbiased estimator will achieve a better
performance than an ML estimator.
In our probabilistic framework the data vector is represented as a bivariate complex Gaussian

whose probability density function is

Prfhnð f Þg ¼
1

pjRð f Þj
� e�hnð f Þ

HRð f Þ�1hnð f Þ. (16)

The spectral correlation matrix can be expressed in terms of the two unknowns as

Rð f Þ ¼
Sxxð f Þ þ Snxnx

ð f Þ Hð f ÞnSxxð f Þ

Hð f ÞSxxð f Þ jHð f Þj2Sxxð f Þ þ Snyny
ð f Þ

" #
. (17)

If one has a set of N measurement vectors, denoted by Hnð f Þ, and assuming the individual
measurement vectors to be uncorrelated then the pdf of Hnð f Þ is given by

PrfHnð f Þg ¼
1

pN jRð f ÞjN
� e�
PN

n¼1
hnð f Þ

HRð f Þ�1hnð f Þ. (18)

The ML of the probability density function PrfHnð f Þg is regarded as a function of the unknown
parameters and is maximised with respect to those unknowns. Since the logarithmic function is
monotonic then one can equivalently maximise L ¼ logfPrfHnð f Þgg. Therefore the problem is to
solve the following equations to obtain the two unknown parameters:

qL

qHð f Þ
¼ 0 and

qL

qSxxð f Þ
¼ 0. (19)

Taking logarithms of Eq. (18) leads to the log likelihood function L being written as

L ¼ �N logðpÞ �N logðjRð f ÞjÞ �
1

jRð f Þj
�
XN

n¼1

hnð f Þ
H ~Rhnð f Þ, (20)
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where ~R is the adjoint of Rð f Þ. The derivative of this function with respect to an arbitrary
parameter, denoted here as a, can be written as

qL

qa
¼

1

jRð f Þj2
qjRð f Þj

qa

XN

n¼1

hnð f Þ
H ~Rhnð f Þ �NjRð f Þj

( )
�

1

jRð f Þj

XN

n¼1

hnð f Þ
H q ~R
qa

hnð f Þ. (21)

The ML estimate of a is given by the value that renders this derivative zero, implying that

qjRð f Þj
qa

� ��1XN

n¼1

hnð f Þ
H q ~R
qa

hnð f Þ ¼
XN

n¼1

hnð f Þ
HRð f Þ�1hnð f Þ �N. (22)

In this problem where there are a pair of unknown parameters one needs to solve a pair of
equations of the form (22). These two equations have identical right-hand sides so the following
equation must be satisfied:

qjRð f Þj
qSxxð f Þ

XN

n¼1

hnð f Þ
H q ~R
qHð f Þ

hnð f Þ ¼
qjRð f Þj
qHð f Þ

XN

n¼1

hnð f Þ
H q ~R
qSxxð f Þ

hnð f Þ. (23)

After some algebra this equation reduces to

Hð f Þ2Ŝymxm
ð f Þ þHð f ÞfŜxmxm

ð f Þkð f Þ � Ŝymym
ð f Þg � Ŝxmym

ð f Þkð f Þ ¼ 0 (24)

in which kð f Þ represents the ratio Snyny
ð f Þ=Snxnx

ð f Þ. The solutions of this quadratic equation are

Hð f Þ ¼
Ŝymym

ð f Þ � kð f ÞŜxmxm
ð f Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fŜxmxm

ð f Þkð f Þ � Ŝymym
ð f Þg2 þ 4jŜxmym

ð f Þj2kð f Þ
q

2Ŝymxm
ð f Þ

. (25)

In order to address the question of which sign to take in Eq. (25) one need only consider the
limiting cases for kð f Þ. The choice of the positive sign corresponds to the TLS solution and
represents the solution where L is maximised whereas the negative sign indicates a worst case
solution, i.e. minimum likelihood solution. This indicates that the ML estimator is equivalent to
the Hsð f Þ estimator with the parameter s equal to kð f Þ.
Note that whilst the problem was originally defined obtaining estimates for two unknowns,

Hð f Þ and Sxxð f Þ, in fact these two elements decouple, so that the problem of estimating the true
FRF does not require one to estimate the true input spectrum. Such a decoupling is extremely
useful but could not be readily justified prior to the above analysis. The noise spectra, knowledge
of which has been assumed throughout this derivation, only enter the solution through the
parameter kð f Þ. Thus it is necessary to know the ratio of the noise spectra in order to select
appropriate value of the parameter s, but it is not necessary to estimate the absolute levels of the
noises.
4.1. Asymptotic performance

The observation that the FRF estimators based on TLS and PCA are equivalent to ML
solutions of appropriate problems is not only of academic interest. The wealth of available
knowledge pertaining to ML estimators also applies to the TLS and PCA estimators in this case.
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More specifically, it is well known that ML estimators are [10]
(i)
 Unbiased.

(ii)
 Asymptotically efficient, that is to say that for large N the ML estimators achieve the CRLB.

(iii)
 Are distributed according to Gaussian statistics.
Combining these properties one can conclude that the error associated with the ML estimators
are approximately distributed as Nð0; s2Þ, where s2 is the CRLB. This observation will be
exploited to allow one to define the confidence intervals for the ML estimator.
There remains the issue of computing the CRLB. Since estimation of Hð f Þ and Sxxð f Þ

decouple then one is essentially dealing with a single (complex valued) parameter estimation
problem. Furthermore, rather than treating the problem as one of estimating a single complex
parameter, Hð f Þ, we can consider it as a problem in two real valued parameters, namely HRð f Þ ¼

RefHð f Þg and HI ð f Þ ¼ ImfHð f Þg.
It is well known that the CRLBs for multi-parameter problems are given by the diagonal

elements of the J�1, where J is the Fisher information matrix defined by

Jp;q ¼ E �
q2L

qapqaq

� �
¼ E

qL

qap

qL

qaq

� �
, (26)

where ap and aq are the parameters being estimated. For Gaussian problems, like the one we
consider, it can be shown that [12]

Jp;q ¼ E
qL

qap

qL

qaq

� �
¼ N Tr Rð f Þ�1

qRð f Þ
qap

Rð f Þ�1
qRð f Þ
qaq

� �
ðp; qÞ 2 ð1; 2Þ, (27)

where a1 ¼ HRð f Þ and a2 ¼ HI ð f Þ. From the definition spectral correlation matrix it is simple to
show that

qRð f Þ
qHRð f Þ

¼ Sxxð f Þ
0 1

1 2HRð f Þ

" #
, (28a)

qRð f Þ
qHI ð f Þ

¼ Sxxð f Þ
0 �i

i 2HI ð f Þ

" #
. (28b)

Substituting these expressions into Eq. (27) and after some algebra one can show that

J ¼
2NSxxð f Þ

2

jRð f Þj2
fjRð f ÞjI þ 2Snxnx

ð f Þ2 H Htg, (29)

jRð f Þj ¼ Sxxð f ÞSnyny
ð f Þ þ Snxnx

ð f ÞSnyny
ð f Þ þ Snxnx

Syyð f Þ (30)

in which H ¼ ½HRð f ÞHI ð f Þ�
t and CRLBs can be evaluated, with the aid of the matrix inversion

lemma (Woodbury’s Identity) [13], one can show that

CRLBfHRð f Þg ¼
jRð f Þj

NSxxð f Þ
2

1�
Snxnx
ð f Þ2HRð f Þ

2

2Snxnx
ð f Þ2jHð f Þj2 þ jRð f Þj

 !
, (31a)
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CRLBfHI ð f Þg ¼
jRð f Þj

NSxxð f Þ
2

1�
Snxnx
ð f Þ2HI ð f Þ

2

2Snxnx
ð f Þ2jHð f Þj2 þ jRð f Þj

 !
. (31b)

For large signal-to-noise ratios (SNRs), i.e. Sxxð f Þ;Syyð f ÞbSnxnx
ð f Þ;Snyny

ð f Þ; Eqs. (31a,b) can
be significantly simplified by neglecting quadratic terms in the noise spectra, so that

jRð f Þj � Sxxð f ÞSnyny
ð f Þ þ Syyð f ÞSnxnx

ð f Þb2Snxnx
ð f Þ2jHð f Þj2 (32)

in which case the CRLBs become

CRLBfHRð f Þg ¼ CRLBfHI ð f Þg �
jHð f Þj2

N

Snyny
ð f Þ

Syyð f Þ
þ

Snxnx
ð f Þ

Sxxð f Þ

� �
. (33)

Therefore, the approximate CRLBs are proportional to the sum of the inverse SNRs on the input
and the output. It should also be noted that the 1=N factor in Eq. (33) indicates that the ML
estimator is consistent. The assumption invoked in approximating Eq. (32) by Eq. (33) also
imposes the independence of HRð f Þ and HI ð f Þ. By virtue of property (iii) of the ML estimators
then the random variable

NjHsð f Þj
2

jHð f Þj2fðSnyny
ð f Þ=Syyð f ÞÞ þ ðSnxnx

ð f Þ=Sxxð f ÞÞg
¼

NfHRð f Þ
2
þHI ð f Þ

2
g

jHð f Þj2fðSnyny
ð f Þ=Syyð f ÞÞ þ ðSnxnx

ð f Þ=Sxxð f ÞÞg

(34)

is a Chi-squared random variable with 2 dof and hence

VarfjHsð f Þj
2g ¼

4jHð f Þj4

N

Snyny
ð f Þ

Syyð f Þ
þ

Snxnx
ð f Þ

Sxxð f Þ

� �2

. (35)

This allows one to write the confidence interval for the squared magnitude of Hsð f Þ as

jHsð f Þj
2 1� logðbÞ

4

N

Snyny
ð f Þ

Syyð f Þ
þ

Snxnx
ð f Þ

Sxxð f Þ

� �2
" #

, (36)

where the fact that the 100b percentile of a Chi-squared distribution, with 2 dof, is given by
logðbÞ has been exploited. The equivalence between Eqs. (36) and (4) can be shown by assum-
ing large N (so that N � 2 � N) and noting that for the case of output noise only then
Snxnx
ð f Þ ¼ 1� g2xmym

ð f Þ.
In order that Eq. (36) can be used in practice one needs to first estimate the input power

spectrum Sxxð f Þ, from which Syyð f Þ can simply be obtained. This could be approached in various
ad hoc fashions, herein we retain the philosophy of ML and solve Eq. (21), with a ¼ Sxxð f Þ, and
replacing Hð f Þ by its ML estimate (25). Again after some algebra one can obtain the optimal
estimator of Sxxð f Þ as

Sxxð f Þ ¼
Sxmxm

ð f Þkð f Þ þ Symym
ð f Þ

kð f Þ þ jHsð f Þj
2

. (37)

This estimate of the input spectrum only depends upon the ratio kð f Þ and not on the absolute
levels of the noise spectra.
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By using Eqs. (36) and (37) in conjunction one can obtain confidence intervals for the squared
magnitude of the transfer function estimator Hsð f Þ. Notice how, whilst the estimators of Hð f Þ
and Sxxð f Þ, Eqs. (25) and (37), respectively, only require the knowledge of the ratio of the noise
spectra, in order to compute the confidence intervals one requires the absolute levels of the noise
spectra, i.e. values for Snxnx

ð f Þ and Snyny
ð f Þ.
5. Results

A series of simulation studies has been undertaken to validate the results of the theoretical
analyses presented. These simulations have all been based on estimating the FRF of a simple
digital system containing two pole and two zeros. In particular the poles and zeros were all located
at a radius of 0.95, with the poles being located at angle of �p=4 and zeros at �3p=4. The system
was excited by Gaussian white noise (with unit variance) and the simulated input and output
measurements were corrupted using independent, additive Gaussian noise. In each trial 1000
realisations of the processes were constructed, with the FRFs being estimated using various
methods and the means and variances being computed across these realisations. Each realisation
consisted of 1 million samples and the spectra were estimated using segment averaging based on
FFTs of 256 samples and employing a Hanning window. This regime allowed us to compute the
mean and variances of the FRF estimators with a high degree of confidence.
Fig. 4 illustrates the mean of the three FRF estimators: H1ð f Þ, H2ð f Þ and Hvð f Þ. The

measurement noises were unit variance, white and Gaussian. The estimator H1ð f Þ yields a biased
estimator of the true FRF. Since the input SNR is constant the bias in H1ð f Þ is a constant
multiplicative factor, which appears as a constant offset on a decibel scale. The behaviour of the
H2ð f Þ estimator is more complex because the SNR of the output measurement varies as a
function of frequency, due to shaping effects of the system. Consequently when the output signal
level is low, e.g. at frequencies near the zeros (like the anti-resonance in the high-frequency region
of our example FRF), the SNR is correspondingly low and the bias is large. Conversely where the
output signal’s amplitude is large, e.g. at frequencies near the poles (like the resonance in the low-
frequency region of the example FRF), the SNR is large and the bias is small. In this case the
estimator Hvð f Þ yields an (almost) unbiased estimate of the FRF. Note Hvð f Þ corresponds Hsð f Þ
Fig. 4. Mean of the FRF estimators: computed using white measurement noise. (a) Estimator H1ð f Þ, (b) estimator

H2ð f Þ and (c) estimator Hvð f Þ—theoretical FRF shown as a dotted line, estimator shown as the solid line.
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Fig. 5. Mean of the FRF estimators for a system with multiple poles and zeros: computed using white measurement

noise. (a) Estimator H1ð f Þ, (b) estimator H2ð f Þ and (c) estimator Hvð f Þ—theoretical FRF shown as a dotted line,

estimator shown as the solid line.

Fig. 6. Variance of ML spectral estimator (solid line—measured variance, dotted line—theoretical prediction of the

variance, see Eq. (35)).
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with kð f Þ set to unity, which is the appropriate value for this simulation. The small disparities
between the theoretical FRF and mean of the estimator Hvð f Þ are due to the effect of the window.
Fig. 5 shows a similar set of results this time using a system model that more closely matches systems

encountered in realistic measurement scenarios. This model contains of four resonances and two anti-
resonances. The observations made with regards to Fig. 4 continue to remain valid in this case.
Fig. 6 depicts the variance of the estimator Hvð f Þ computed across the 1000 realisations of the

processes and as predicted by Eq. (35). The theoretical prediction can be seen to be good in the
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Fig. 7. Measurement noise spectra. (a) Input noise and (b) output noise.

Fig. 8. Means of FRF estimators: computed using coloured measurement noise. (a) Estimator H1ð f Þ, (b) estimator

H2ð f Þ and (c) estimator Hsð f Þ—theoretical FRF shown as a dotted line, estimator shown as the solid line.
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region where the SNR is large, but the variance is poorly predicted in the high-frequency region,
where the SNR is low. This is a consequence of the approximation (33) used in deriving Eq. (35)
becoming invalid. This allows confirms that the variance expression (35) provides a suitable basis
for the quality measures, such as confidence intervals (36).
The final simulation study used coloured measurement noises, the colouration being realised by

filter with low-order FIR filters. The spectra of the two noise processes are shown in Fig. 7. Fig. 8
illustrates the behaviour of the three FRF estimators H1ð f Þ, H2ð f Þ and Hsð f Þ. In this case it is
necessary to use the estimator Hsð f Þ since kð f Þa1. The general behaviour of H1ð f Þ and H2ð f Þ
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remains consistent, so that H1ð f Þ has a large bias when the input SNR is low and H2ð f Þ has a
large bias when the output SNR is low. Clearly the estimator Hsð f Þ remains very nearly unbiased.
Once again small deviations from the theoretical predictions are due to the finite window size.
6. Summary

This paper has considered the problem of FRF estimation from two different standpoints. It
has shown the principle of PCA can be applied to the problem of FRF estimation and the
resulting algorithm corresponds to the TLS FRF estimator Hvð f Þ. The second approach to FRF
estimation that has been considered is that of statistical inference. The principle of ML has been
applied to derive optimal estimators for the FRF. The resulting algorithm corresponds to the
established Hsð f Þ FRF estimator, with the parameter s equated to the ratio of the measurement
noise spectra. This estimator is unbiased in the presences of both input and output noise. In
addition by exploiting the general properties of ML estimators an expression for the variance of
the Hsð f Þ estimator has been derived. The assertions made in this paper have been validated via a
series of simulation studies.
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